
Conditional Wasserstein Generative Adversarial Networks

Cameron Fabbri
University of Minnesota

Computer Science and Engineering
fabbr013@umn.edu

Abstract

Deep neural networks have been shown to be powerful function approximators, achieving great success across many tasks.
While much of the focus has been towards discriminative tasks, recent advances in generative models has brought a surge of
research towards this area. Generative Adversarial Networks (GANs) have been able to model complex data distributions such
as the set of natural images. While effective, they have been shown to be very hard to train in practice. This work demonstrates
how an improvement to the GAN framework can be used in a conditional manner, able to restrict their generation according
to some alternate information, such as a class label. Additionally, we explore this learned latent space in an informed manner,
showing smooth translations between images and attributes.

I. INTRODUCTION

Dimensionality reduction is a well studied problem, with
applications in many areas including clustering, classifica-
tion, and latent space exploration through methods such as
vector arithmetic or interpolation. Classical dimensionality
reduction methods such as SVD and PCA are completely
unsupervised. Recent supervised methods using neural net-
works, such as autoencoders, have been shown to represent
data in a lower dimensional space with high accuracy. High
dimensional data, such as images, are assumed to live on
some natural manifold with properties that make such data
much easier to explore. Many methods of image exploration
are executed directly on the pixel space. These level of
operations, such as image filters (e.g. conversion to grayscale,
contrast change, sepia toning, etc.), require very little infor-
mation pertaining to what is represented in the image. More
complex, high level operations, such as the altering of class
attributes (discrete attribute manipulation), or the changing of
an object’s size (continuous attribute manipulation), require
a more informative representation of the image.

Directly operating on the pixel space (in a fully automated
manner) would give unacceptable results, due to the fact that
these methods must have some sense of knowledge about
the image. Low level image manipulation methods, such as
sepia toning, do not need any knowledge of what the image
contains. On the other hand, if we were to try and add glasses
to an image of a person, inserting glasses into the pixel space
would give no guarantees as to whether or not they were
correctly placed on the person’s face. In order to perform
such an operation, we consider introducing alterations in a
lower dimensional space, and then generating the new image.

Generative models that are able to accurately capture
a complex data distribution have been proven to be very
powerful. The most recent wave of success has come with the
development of Generative Adversarial Networks (GANs)
[1], which aim to approximate the probability distribution
function from which some data originates from. This allows
the direct sampling from this distribution in order to generate
similar, but new data. Although well defined in theory, their

use in practice becomes troublesome (see [2] for a very
detailed review). There have been a large number of im-
provements to the vanilla GAN, which we give a brief
review of in Section II-E. A simple yet notable extension
of the GAN is the conditional GAN (cGAN) [3], which
conditions the generation on some extra information, such
as a class label. This paper focuses on a variant of the
GAN formulation, namely the Wasserstein GAN (WGAN)
[4], [5] in a conditional sense. We show that we are able to
control image generation conditioned on both discrete and
continuous attributes, as well as greatly stabilize training with
the use of WGANs.

II. BACKGROUND

This section serves to give a review of neural networks,
convolutional neural networks, and various types of gener-
ative models. This work focuses on Generative Adversarial
Networks, which are outlined in Section II-E.

A. Neural Networks

To understand a neural network, one must first understand
the concept of a perceptron. A perceptron is a single node
which computes the summation of its inputs multiplied by a
set of trainable weights. This is simply a linear combination
of its inputs, and outputs a binary decision function based
on whether or not its value passes some threshold. Because
many real world problems are extremely nonlinear in nature,
the concept of a perceptron evolved to that of a neuron. A
neuron is similar to a perceptron, but has an additional bias
term, as well as an activation function, which adds some form
of non-linearity. Figure 1 shows a simple neuron. A feed-
forward neural network consists of multiple layers of neurons
interconnected in a feed-forward fashion, often referred to
as a multi-layered perceptron (MLP). All networks have an
input layer and an output layer. Intermediate layers in a
network are referred to as hidden layers, because they are
not directly connected (visible) to outside information.
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Fig. 1: A single perceptron.

Historically, the sigmoid function was used as a common
activation function because it is able to squash a real-valued
input to a range between 0 and 1, which is useful in
computing probabilities. Nowadays, due to problems with
the sigmoid such as the vanishing gradient, the most popular
activation function is the Rectified Linear Unit (ReLU) [6].
The ReLU function is a piecewise linear function with two
linear pieces, calculated as f(x) = max(0, x). Due to it
being nearly linear, it preserves many properties that make
linear models easy to optimize with gradient-based methods
[7]. Despite the major improvement ReLUs provided, a slight
modification to this function, called a Leaky ReLU (lReLU),
has seen popular use as well. Often times in a neural network,
a ReLU node can “die”, which simply means it always
outputs a value of 0. When this happens, it is very unlikely
to recover because the gradient at 0 is 0, so learning in that
neuron will stop. To help alleviate this, the lReLU function
is computed as f(x) = max(αx, x), for some 0 < α < 1.

B. Deep Neural Networks

Deep learning is a class of neural networks that use
many hidden layers between the input and output to learn
a hierarchy of concepts, often referred to as deep neural
networks (DNN). As stated in II-A, in a feedforward
network, each successive layer uses the output from the
previous layer as input, then uses an activation function to
obtain a new representation of the input. The output of the
network is compared to some given label accoring to some
cost function. While this difference is quite intuitive, given
any intermediate hidden layer, it becomes less obvious what
the output of that layer should be. In order to learn the
set of weights and biases connecting successive layers, the
error is propagated backwards through the network from the
output, in order to optimize a given objective function. This
process is known as backpropagation [8]. Backpropagation
is used in conjunction with an optimization method, such
as gradient descent, to efficiently compute the gradients by
propagation from the output to input (see e.g. [8], [9] for
a more in depth review). This allows multi-layer networks
to learn a non-linear mapping from a large amount of
data. Computational limitations do not allow us to simply
optimize this function all at once, and therefore data is often

fed into the network in batches. Stochastic gradient descent
can be used to approximate the true gradient of all the data
given a random mini batch. Recent advances in GPUs have
provided massive speedups in training due to their ability to
parallelize these operations.

C. Convolutional Neural Networks

The most common type of DNN for visual data is the
Convolutional Neural Network (CNN), which is designed
specifically for multidimensional data with spatially corre-
lated features. CNNs incorporate three powerful techniques,
which together provide scalability, and some degree of scale
and shift invariance. The first is the use of shared weights,
which stems from the idea that a feature detector used in one
part of an image is almost certainly useful in other parts of
the image. This also allows networks to reduce the number of
parameters to avoid the curse of dimensionality. The second
is the use of local receptive fields. A kernel (sometimes called
a filter) is convolved across the entire image to produce
a feature map. Each pixel in the resulting feature map is
the result of the kernel convolved with a small area in the
input. The use of local receptive fields allow earlier layers
in the network to learn low-level features such as edges or
corners, which can then be combined in successive layers
throughout the network to learn high-level features. The third
technique is various forms of subsampling. Convolutions
with a stride > 1 inherently subsample, as the resulting
output is of a lower dimensionality from the input. Other
subsampling techniques, such as the use of pooling layers,
provide a strict form of linear downsampling. The most
common technique, maxpooling, takes the max of an n× n
region of a feature map. One way to interpret this is pushing
the most informative information forward.

While the size of the output in a MLP is independent of
the size of its input, the produced feature map in a CNN
depends on the kernel size and stride. Additionally, padding
is often used to pad the input with zeros, simply to allow for
spatial dimensions to agree during downsampling. However,
the number of feature maps or depth of the resulting layer
(which corresponds to the width of the network as a whole)
is arbitrary. While there are many options for architecture
design, many rely on heuristics, as well as some theoretical
design principles as shown in [10].

D. Deep Generative Models

Since the advent of Alexnet [11], most of the focus has
been put on CNNs as a discriminative model, learning a
function to map some input data to some desired output
label. Only until recently have generative models been more
of the focus. Autoencoders, Deep Boltzmann Machines,
and Deep Belief Nets are some examples of these class of
models. Generative models are most assumed with that of
unsupervised learning, where we do not have labels for our
data. One primary goal in unsupervised learning is to be
able to learn a representation powerful enough to accurately



represent the data. Other methods of unsupervised learning
are more focused towards the generative side, where the
goal is to be able to generate a new but similar data point.
One issue facing generative models is the need for some sort
of randomization somewhere in the model in order for the
output to be random (we want to generate something new,
not just sample from the data we already have) . Because we
cannot backpropagate through a random layer in a network,
the reparameterization trick [12] is introduced. Rather than
involving some sense of randomness in our model, we can
simply sample randomly from some distribution, and use
that as input. More concretely, we can have some generator
network G, that takes as input a random variable z sampled
from some distribution, e.g. z ∼ N (0, 1), and outputs a
sample x.

Generative models have been shown to perform well
on many tasks such as inpainting [13], image denoising
[14], video prediction [15], super resolution [16], volume
rendering [17], paired image-to-image translation [18], and
unpaired image-to-image translation [19]. Autoencoders have
been a popular form of generative model because of their
ability to approximate some distribution of observed data,
such as imagery. A simple auto-encoder setup may be to
learn an encoding z over a set of images, X , with z ∈ Rk,
Xd ∈ X , with k < d. An image X ∈ Rm×n is encoded
through an encoder CNN to some latent variable z ∈ Rk,
which is then used as input to a decoder CNN to produce
X ′ ∈ Rm×n. A loss function, such as L2, is then used to
compare the two, and the error is propogated back through
the networks. To produce a new sample, a random variable
z′ can be used as input to the decoder network in place of an
encoded z. One obvious issue is the lack of knowledge about
this encoded space, making sampling from it difficult. The
work of [12] showed that by assuming it is approximately
Gaussian, and using that as a constraint on the encoding, we
can more easily sample for z′.

An open research problem is to determine an appropriate
loss function. While L2 and L1 are popular choices, they
often result in blurry images, and may not even be a correct
metric for visual quality. For example, a small shift in the
pixelspace may result in no difference to the human eye,
but would have a large loss in the L2 space. A recent class
of generative models proposes to instead use an adversarial
loss in place of existing loss functions in the form of a neural
network.

E. Generative Adversarial Networks

Generative Adversarial Networks (GANs) [1] represent a
class of generative models based on a game theory scenario
in which a generator network G competes against an adver-
sary, D. The goal is to train the generator network to generate
samples that are indistinguishable from the true data, pdata,
by mapping a random input variable z ∼ pz to some x.
This mapping can be represented as G(z; θg), where G is a
MLP with weights θg , and z is a random variable sampled
from some distribution, e.g. z ∼ N (0, 1). The discriminator,

D(x; θd), is represented by a second MLP with weights θd,
and outputs a scalar representing the probability that a sample
x came from pdata rather than from G. The two networks
are trained simultaneously, with D being trained to maximize
the probability of correctly distinguishing whether or not a
sample came from pdata or from G, and G being trained
to fool D by minimizing log (1 − D(G(z))). This can be
represented by the following objective function:

min
G

max
D

Ex∼pdata(x)
[log D(x)]+

Ez∼pz(z)[log (1−D(G(z)))]
(1)

In practice however, early on in training D will be able to
easily discriminate between real and generated samples. This
is due to the fact that G’s weights are randomly initialized,
and the generated image is conditioned only on input noise.
Images generated early in training obviously will essentially
be noise, which will clearly look very different than those
from the true data set. The discriminator will easily be able
to differentiate between real and generated samples, causing
log (1 − D(G(z))) to saturate. Therefore, in practice it is
more common to instead train G to maximize log(D(G(z))),
which is the same as minimizing log(1−D(G(z))), but with
much stronger gradients [1].

Conditional GANs (cGANs) [3] introduce a simple
method to give varying amounts of control to the image
generation process by some extra information y (e.g a class
label). This is done by simply feeding y to the generator and
discriminator networks, along with z and x, respectively. The
new objective function then becomes:

min
G

max
D

Ex,y∼pdata(x,y)
[log D(x, y)]+

Ez∼pz(z),y∼pdata(y)[log (1−D(G(z, y)))]
(2)

Conditional GANs have been shown to work well not only
with attributes, but also by conditioning on an image itself
to perform image-to-image translation [18].

GANs aim to approximate the probability distribution
function that some data is assumed to be drawn from.
The original formulation in [1] showed that treating the
discriminator as a classifier minimizes the Jensen-Shannon
(JS) divergence between the true data distribution and the
one assumed by the generator. This shows to be extremely
unstable and difficult to train in practice. See [2] for a
detailed review. Much of the recent work has been focused
towards improving the stability and quality of GANs by
improving the quality of the gradients from the discriminator
(i.e. using a loss function other than classification). Energy-
based GANs [20] view the discriminator as an energy
function which attributes low energy near the data manifold
and high energy elsewhere. This is a particularily interesting
approach, as it models the discriminator as an autoencoder.
This means that just given the true data, the discriminator
would be able to learn the distribution on its own, whereas
the discriminator in a vanilla GAN would not, because a one
class classifier does not make sense. Least Squares GAN
[21] (LSGANs) adopts a least squares loss function for the
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Fig. 2: Our generator architecture. A 100 dimensional vector z is randomly sampled from a normal distribution
and concatenated onto an attribute vector y. The result is projected into a convolutional representation. We
use transpose convolutions in order to upsample to 64× 64× 3.

discriminator, which was shown to minimize the Pearson X 2

divergence. Fisher GAN [22] defines the discriminator as
an Integral Prabability Metric which discriminates between
two probability distributions. The Wasserstein GAN [4]
(WGAN) shows that the Wasserstein-1 distance, or Earth
Mover (EM), may be a more appropriate distance in which
to measure the two distrubutions. For this work, we focus
on an improved method for the Wasserstein GAN, and show
a comparison with the vanilla GAN.

1) Wasserstein GANs: It has been shown that even in very
simple scenarios the JS divergence does not supply useful
gradients for the generator [4]. On the other hand, the EM
distance does not suffer from these problems of vanishing
gradients. The EM distance or Wasserstein-1 is defined as:

W (Pr,Pg) = infγ∈
∏

(Pr,Pg)E(x,y)∼γ [||x− y||] (3)

where
∏
(Pr,Pg) denotes the set of joint distributions γ(x, y)

whose marginals are Pr and Pg , respectively [4]. Because
the infimum is very troublesome, [4] instead proposes to
approximate W given a set of K-Lipschitz functions f by
solving the following:

max
w∈W

Ex∼Pr
[fw(x)]− Ez∼p(z)[fw(Gθ(z))] (4)

Such a function fw can be found by training a neural network
(modeled as the discriminator). To ensure fw is K-Lipshitz,
the weights are clamped to some range (e.g. [-0.01, 0.01]),
after each gradient update. Two interesting things come from
this formulation: 1) The loss reported by the generator and
discriminator correlate well with image quality, and 2) unlike
the original GAN, where the updates to the generator get
worse as the discriminator gets better [2], WGAN actually
relies on a perfect discriminator. For this reason, the gradients
of the discriminator are updated n times for every 1 update

to the generator (n = 5 is common in practice). While
providing stability in training, this comes with the cost of
long training times. Furthermore, [5] showed that the weight
clipping leads to potential instability in the discriminator, as
well as severely limiting its capacity.

2) Improved Wasserstein GANs: In order to enforce the
Lipschitz constraint without clipping the weights of the
discriminator, [5] instead penalizes the gradient, leading to a
WGAN with gradient penalty (WGAN-GP). More formally,
a function is 1-Lipschitz only if it has gradients with a norm
of 1 almost everywhere. In order to enforce this, WGAN-GP
directly constrains the norm of the discriminator’s output
with respect to its input. This leads to the new objective
function:

max
w∈W

Ez∼p(z)[fw(Gθ(z))]− Ex∼Pr [fw(x)]+

λEx̂∼Px̂
[(||∇x̂fw(x̂)||2 − 1)2]

(5)
where Px̂ is defined as sampling uniformaly along straight
lines between pairs of sampled from the true data distri-
bution, Pr, and the distribution assumed by the generator,
Pg = Gθ(z). This is motivated by the intracability of
of enforcing the unit gradient norm constraint everywhere.
Because the optimal discriminator consists of straight lines
connecting the two distributions (see [5] for more details), the
constraint is enforced uniformaly along these lines. As with
the original WGAN, the discriminator is updated n times for
every 1 update of the generator.

The rest of this paper considers the original GAN and
WGAN-GP in the conditional sense for directed image al-
teration and latent space exploration. Expanding on [23], we
show the use of WGAN-GP provides more stable training,
as well as higher quality generations.



Fig. 3: Left: MNIST styles with attribute swapping. Right: Interpolation between z and y for four generated
images (corners).

III. RELATED WORK

Generative models have been showing great success since
the advent of GANs. Prior to GANs, a Variational Autoen-
coder (VAE) was the most popular generative model, which
imposes a prior on the encoding space z in order to constrain
the space to sample from. One issue facing this approach is
the pixel-wise reconstruction error, which introduces blurry
images. The work of [24] replaced this reconstruction error
with learned features representations from a GAN. Their
model was also able to condition on class attributes, showing
impressive results. An Adversarial Autoencoder (AAE) was
proposed by [25], which is a probabilistic autoencoder that
uses a GAN to perform inference. CVAE-GAN [26] com-
bines a VAE with a GAN for synthesizing images in fine-
grained categories, such as the face of a specific person. In
the work of [27] uses the discriminator of a GAN to also
predict the class label of an image, as well as the probability
of it being a real or generated image.

This work is an extension of the work done by [5],
introducing the Improved Wasserstein method into the cGAN
framework. The result of this is a much more stable training
environment and higher quality samples for conditional im-
age generation using GANs. The rest of the paper is set up as
follows. Section IV discusses the methodology used. Section
V shows experiments on three datasets, one not originally
shown in [23]. Section VI goes into discussion for how to
interpret the results, and finally we conclude in Section VII.

IV. METHODOLOGY

Our method is based on the Wasserstein GAN [4], using
the gradient penality for ensuring the 1-Lipschitz contsraint
of the discriminator [5]. By introducing this into the condi-
tional GAN setting, we are able to alter class attributes for
controlled image generation.

A. Conditional GAN

A conditional GAN (cGAN) is very similar to a regular
GAN. In its simplest form, some extra information y is
concatenated onto z such that the generator is conditioned
to include this information in the generation process. In a
similar fashion, this information y is also included in the
input to the discriminator. It’s an unsolved problem as to

what the “best” way to include conditional information into
a neural network is. Many approaches exaustively search for
how this information should be combined, or where in the
network it should be included. One approach, which is the
one we take in this work, is to include y in the input layer
for both the generator and the discriminator. This is a natural
choice because, while not having any quantitative measures,
one can assume that introducing y earlier in the network
will have a greater impact due to the network having more
changes to learn from it (i.e. information from y will be
contained in more layers). Other approaches which we do not
explore include introducing y at every layer in both networks.

B. WGAN-GP

We chose to use the Improved Wasserstein GAN with
Gradient Penalty outlined in Section II-E.2, as it provides
more stability while training and overall higher image qual-
ity. For all of our experiments, we use the Adam optimizer
[28] with parameters β1 = 0, β2 = 0.9, and a learning rate
of α = 1e − 4. The generator and discriminator are trained
in tandem, with the discriminator being updated n = 5 times
for every generator update.

C. Architecture Details

Our architecture is based on that of [29], and we show the
generator in Figure 2. The attribute vector y is concatenated
onto z, which is projected into a convolutional representation
of size 4×4×512 (this can be thought of as a fully connected
layer without an activation function). The rest of network is
fully convolutional, and contains batch normalization [30]
and a ReLU activation function [6] after each convolution,
with an exception of the output layer, which does not
use batch norm and uses a TanH activation function. Each
convolutional layer uses a kernel size of 5×5 and stride 2×2.
For upsampling we chose to use transpose convolutions.

The discriminator network mostly mirrors the generator
network with a few exceptions. Due to the gradient penalty
with respect to the input, no batch normalization is used.
Leaky ReLU activations are used after each layer, except
the output which does not have an activation function. Each
convolutional layer uses stride a kernel size of 5×5 and stride
2 × 2, except for the last layer which uses a kernel size of



Fig. 4: Swapping CelebA attributes. Each row contains the same z vector, and each column a different y
activation for each attribute. The top two rows were generated with the male flag active, and the bottom two
with the female flag active.

4× 4 and stride 1× 1. The resulting output score from the
discriminator is of size 4×4×1, which we take the mean of.
In order to to include the d dimensional attribute vector, we
concatenate it onto the channel axis of the input image. The
resulting input to the first convolutional layer is then m×n×
(d+3), where m is the image height, n is the image width,
and d is the number of attributes in consideration. Images are
normalized to a range [−1, 1]. Training took approximately
24 hours on a GTX 1080. Implementation was done using
the Tensorflow library [31]. 1

V. EXPERIMENTS

A. Datasets

We first experiment on the MNIST dataset [32], which is a
collection of handwritten digits. We use the official train test
splits (including the validation in train). There are 60, 000
items in the train split, and 10, 000 in the test split. Each
image has an associating attribute vector corresponding to
what number it is, which we represent with a one-hot vector,
n = 10. The second dataset we use is CelebA [33], which is
comprised of just over 200,000 celebrity faces. We use the
aligned and cropped version, and further crop and resize to
(64, 64). This dataset consists of 40 attributes, for which we
choose n = 9, specifically: bald, bangs, black hair, blonde
hair, eyeglasses, makeup, gender, pale skin, and smiling. For
this we use the official train and validation splits as our
training data (∼ 182, 000 images) and test split (∼ 20, 000
images). The third and final dataset we consider is the EFIGI
Galaxy dataset [34]. This dataset consists of 4458 nearby
galaxies with detailed morphologies such as arm strength,
visible dust, and spiral arm curvature. Of the attributes,
we choose n = 4 of them, all of which are continuous,
unlike the attributes of the MNIST and CelebA datasets.
This shows to be a much more difficult problem. We train
all of our networks for 100 epochs, and randomly sample

1https://github.com/cameronfabbri/cWGANs

z from a normal distribution with µ = −1 and σ = 1, i.e.
z ∼ N (−1, 1).

B. MNIST

The generator network is a function G : z
⊕
y ∈ R110 →

R28×28, where
⊕

represents concatenation. We first test
the effect of changing y (the attribute) while keeping z
constant, for which results can be seen in Figure 3 (left).
What is observed is z controlling the style of writing, while
y clearly controls the digit class. Note that these are not
images from the train or test split, but completely generated
by the network.

One way we can explore the latent space computed by
the generator is through interpolation. Figure 3 (right) shows
interpolating between 4 images. This shows how we can
“walk” along the manifold to display its smoothness. We
generate the four corners of the grid, then interpolate between
both the z and y vectors. Although the network was only
trained on binary attributes for y, interpolation results show
that the computed latent space is smooth between attributes,
and not simply discrete to those shown in the training set.

C. CelebA

For CelebA we use the same sampling method for z as
with MNIST. The CelebA dataset lives in a much larger
space than MNIST, as it also contains color. In this case,
the generator network is a function G : z

⊕
y ∈ R109 →

R64×64×3. We also have the interesting property of having
cases where more than one attribute can be active (e.g. a
person can be smiling and have blonde hair), whereas with
MNIST only one digit label will be active at a time. This adds
additional complexity in that the network should learn that
combinations such as bald and bangs should not be viable. In
Figure 4 we show attribute alteration across generated faces.
In each case, the activated attribute is clearly seen in the
output image. This qualitative result displays the ability of
the network to learn the representation of attributes as they
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Fig. 5: The result of exploring the latent space for the EFIGI galaxy dataset. For each row we keep z fixed
and linearly interpolate between two continuous attributes.

affect faces. Interesting combinations such as male + makeup
that were not seen in the dataset look completely realistic.

D. EFIGI
The EFIGI dataset [34] is a set of 4,458 annotated images

of galaxies. Of the attributes, we choose 4 due to their strong
visual correlations: Arm strength, arm curvature, visible
dust, and abundance of neighboring galaxies. All of these
are continuous, as opposed to the discrete attributes seen
in MNIST and CelebA. The generator is then a function
G : z

⊕
y ∈ R104 → R64×64×3.

Due to the fact we are only considering continuous at-
tributes, visualization becomes easier through interpolation,
which results in a smooth transition between images (see
Figure X). These qualitative results show the learned latent
space is smooth and able to generalize to information not
seen during training. A more quantitative result would be,
for example, to be able to then predict these attributes given
the image, but we leave this for future work.

VI. DISCUSSION

In this section we discuss the implications of a learned
latent space. Informative latent spaces can be very powerful,
as they provide a means to intelligently sample new data.
Ideally, we want a smooth manifold that is able to capture
the inherent structure of the data, as opposed to merely
memorizing it. GANs have been shown to exhibit very
expressive latent spaces, able to perform meaningful vector
arithmetic [29]. In the case of conditional GANs, this space
must not only capture relations between images, but their
attributes as well. Our goal is for the probability distribution
approximated by the generator to be smooth enough to
capture ‘holes’ in the dataset (e.g. male + makeup attribute).

The CelebA dataset contains only binary attributes as-
sociated with each image (i.e. there is no ‘partially bald’
attribute). One may expect the latent space to be partially
disjoint to these attributes, only able to capture local ‘spikes’
in the information according to the attributes provided during
training. What we see is quite the opposite. Figure X shows
interpolation along the bald attribute, giving a very smooth
progression. Although the network was never given informa-
tion about a partially bald attribute (or a continuous attribute
of any type for that matter), the learned representation is able
to smoothly transition from one attribute to another. Further
latent space exploration can be seen in the Appendix.

Fig. 6: Interpolation along the bald attribute.
Although the network was never trained on the
attribute of ‘partially bald’, it is able smoothly
interpolate towards it (middle image).

VII. CONCLUSION

We show a stable generative method for image generation
conditioned on attributes. Apart from many other methods,
we show experiments that use continuous attributes. In com-
parison to the vanilla GAN loss, WGAN-GP offers a more
stable training environment as well as higher quality samples.
We also found the latent space computed by WGAN-GP to
be overall smoother, and suffer less from mode collapse. De-
spite the longer training time, we believe these improvements
are very advantageous in other applications.
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VIII. APPENDIX

Here we provide additional images as well as a more detailed explanation of the architecture designs. In all models, the
first linear projection outputs a tensor of size 4× 4× 512, which is the input to the first convolution. The concatenation in
all generators is done on the first (non batch) dimension. The concatination in all discriminators is done by padding y with
zeros and concatenating it depthwise.

A. MNIST Architectures

Generator

Operation Kernel Stride Filters Batch Norm Activation
Concatenation No

Linear Projection No Linear
Convolution 5× 5 2 256 Yes ReLU
Convolution 5× 5 2 128 Yes ReLU
Convolution 5× 5 2 1 Yes ReLU

Discriminator

Operation Kernel Stride Filters Batch Norm Activation
Concatenation No
Convolution 5× 5 2 64 No Leaky ReLU
Convolution 5× 5 2 128 No Leaky ReLU
Convolution 5× 5 2 256 No Leaky ReLU
Convolution 5× 5 2 512 No Leaky ReLU
Convolution 4× 4 1 1 No Linear

B. CelebA and EFIGI Architectures

Generator

Operation Kernel Stride Filters Batch Norm Activation
Concatenation No

Linear Projection No Linear
Convolution 5× 5 2 512 Yes ReLU
Convolution 5× 5 2 256 Yes ReLU
Convolution 5× 5 2 128 Yes ReLU
Convolution 5× 5 2 3 Yes ReLU

Discriminator

Operation Kernel Stride Filters Batch Norm Activation
Concatenation No
Convolution 5× 5 2 64 No Leaky ReLU
Convolution 5× 5 2 128 No Leaky ReLU
Convolution 5× 5 2 256 No Leaky ReLU
Convolution 5× 5 2 512 No Leaky ReLU
Convolution 4× 4 1 1 No Linear



C. Additional Examples

Fig. 7: Swapping CelebA attributes using the vanilla GAN loss with the same architecture. Attributes are
present, although visual quality is much worse compared to WGAN-GP.

We can also interpolate in the same manner seen in Figure 3 between faces. Figure 8 shows interpolation using a regular
GAN.

Fig. 8: Interpolation between four images using the vanilla GAN loss. Each corner is an image generated using
randomly selected attributes. Interpolation along z and y generated the intermediate images.



Fig. 9: Interpolation between four images using the WGAN-GP loss. Each corner is an image generated using
randomly selected attributes. Interpolation along z and y generated the intermediate images.

Fig. 10: Interpolation between four galaxies using the WGAN loss. Each corner is an image generated using
randomly selected attributes. Interpolation along z and y generated the intermediate images.


	Introduction
	Background
	Neural Networks
	Deep Neural Networks
	Convolutional Neural Networks
	Deep Generative Models
	Generative Adversarial Networks
	Wasserstein GANs
	Improved Wasserstein GANs


	Related Work
	Methodology
	Conditional GAN
	WGAN-GP
	Architecture Details

	Experiments
	Datasets
	MNIST
	CelebA
	EFIGI

	Discussion
	Conclusion
	References
	Appendix
	MNIST Architectures
	CelebA Architectures
	Additional Examples


