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Abstract

We propose a framework for learning a policy directly from data in the contex of
behavioral cloning. We explore environments in which a reward function R is not
known. Classically, Inverse Reinforcement Learning is used to extract R to then
use with Reinforcement Learning to learn a policy π. We skip this step, and train
an agent that matches the policy of the behavior given by a human such that the
two are indistinguishable. A focus is put on the self-driving environment, however
we note that this framework is general and can be applied to any simulation for
which human experience is obtainable.

1 Introduction

The ability of autonomous agents to be able to play various types of games at or better than human
performance has been a research interest for decades, possibly beginning with The Turk, an “au-
tonomous” chess playing machine from the 18th century (later to be found a hoax). Games such
as chess have a very large state space, making solving them very difficult or intractable. Modern
video games have an even larger, possibly infinite state space, and definitely cannot be computed in a
reasonable amount of time. Due to this, the community has turned to learning-based approaches. The
goal then becomes finding the optimal method to train such an agent to learn how to play (and most
importantly win) a game.

There are two obvious methods for training an agent to play a game. The first is a supervised training
approach, where an agent is shown example state and action pairs provided by a human expert,
and aims to generalize what action(s) should be taken in a given state, through a processes such as
regression. This is commonly known as behavioral learning [19]. While effective this approach has
several issues, the first being a need for an expert. For each game we want to train an agent to learn,
an expert player must provide training data for. This is extremely tedious, and furthermore we have
no way of knowing if even the best human player available has pushed the game to its limits, and is
truly an “expert”. The second method aligns closely to how humans learn to play games — without
direct supervision. This field has become known as reinforcement learning [23], and revolves around
learning a policy in order to maximize a cumulative reward. With this, we hope to extract a policy
that exceeds human performance, without any human teaching or intervention. A brief review of
reinforcement learning is given in Section 2.

Behavioral cloning has seen less attention in the reinforcement learning community, partially due
to the fact that a main goal is to outperform a human, so cloning the play style of one may not
necessarily achieve this. In our work, we put a focus on game environments in which there is no clear
winner or loser, and where an end goal may not even be in mind. The goal is to perform behavioral
cloning using Generative Adversarial Networks (GANs), specifically for the task of driving a car. In
this setup, we assume a policy exhibited by a human player πP and attempt to approximate that policy
πθ. In other words, we aim to train an agent that is able to drive a car such that it is indistinguishable



from a human controller. While there may be sub-policies that we may want to learn such as “stay on
the road”, or “don’t hit pedestrians”, that depends on the human behavior we are attempting to clone.
We believe that this work may provide steps towards understanding human behavior and how certain
properties may be reproduced.

Learning a generative model is natural for this task. A regression model will inherently be constrained
towards the data points seen in the dataset, and there is no guarentee that the solution space will not
be partially disjoint. A generative model on the other hand, puts no constraints on the solution space
towards specific instances seen in the training data. Due to GANs learning a distribution, they are
able to learn a much more diverse set of possible solutions, and provides a perfect framework for this
task.

2 Background

This section provides a brief background on reinforcement learning (RL) and some related work.
Readers are directed to e.g. [23, 25, 26, 20, 3] for a more comprehensive review and in depth details
on RL. Section 2.3 provides a brief review of Generative Adversarial Networks, which we choose to
use as our generative model.

Nomenclature

• E Environment
• a Action
• s State

• r Reward
• γ Discount Factor
• π Policy

2.1 Reinforcement Learning

An agent in some environment E following policy π(at|st) interacts with the environment over time,
taking action at ∈ A in state st ∈ S in order to maximize some defined cumulative reward R. The
result of taking action at is the transition st → st+1, and the receiving of some immediate reward rt.
The goal of RL is to learn an optimal policy π∗ by using these observed rewards in order to maximize
the expected total reward. A policy takes as input a state and returns an action to perform, and the
optimal policy is a policy which maximizes the expected return Rt =

∑T
t=0 γ

trt+1, where T is the
length of an episode (when the game terminates). In RL, our goal is to find some optimal policy
π∗. The following model-free reward-driven RL approaches describe the current state of the art in
control.

Q-Learning Q-learning [25, 26] is a form of model-free RL with the goal of learning an action-
utility function, commonly known as a Q-function, which returns the expected utility of taking action
a in state s following policy π: Qπ(s, a) = E[R|s, a, π]. In this framework, an agent chooses an
action in a state, and observes the outcome of taking that action in terms of a reward. Following the
Bellman Equation, we can learn Qπ in order to approximate Q∗:

Qπ(s, a) = Est+1
[rt+1 + γQπ(st+1, π(st+1))]

A Q-function can be represented by a neural network with weights θQ. In order to learn these weights,
we can define a loss over the estimated Q values:

L = E[||(rt + γQπ(st+1, at+1))−Q(s, a)||2]

Differentiating this loss with respect to θQ resolves in a gradient which can be computed and
optimized via gradient descent. Usually this is done after every time-step as an agent interacts with
an environment.

The work of [18] showed that by using a Convolutional Neural Network to approximate Q∗ they
were able to train an agent to play various Atari games using this method. It was shown, however,
that this method would overestimate action values in certain scenarios. Towards improving this, the
work of [24] introduced Double Q-learning, which decouples the selection and evaluation of actions.
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While viable for discrete action spaces, it was not until the work of [13] before continuous action
spaces could be considered.

Policy Gradient While Q-learning methods store a value function, the use of policy gradient
methods instead search directly for the optimal policy π∗. In this framework, the policy is represented
explicitly by its own function approximator, and is updated using gradient ascent with respect to
policy weights in order to maximize the expected reward. The REINFORCE algorithm [28] showed a
way to provide an estimation of the gradient, but usually some baseline b(st) is subtracted to reduce
the variance of the estimate. The final gradient direction is then

∇θ log π(at|st)(Rt − b(st))

The work of [23] showed that the gradient can be estimated by an approximate action-value or
advantage function by using the agent’s experience. This is proven to converge to a locally optimal
policy.

Actor-Critic Combining policy search and value iteration methods yields the actor critic model
[10]. In this framework, the policy acts as the actor, and the value function acts as the critic. The
baseline mentioned earlier in policy gradient methods is computed using the value function. Actor
critic methods have seen huge success in areas such as learning to play atari games. Using an
asynchronous approach, [17] showed that they were able to train multiple agents simultaneously in
order to update a “master model”, and were able to outperform previous learning algorithms, all
while training faster on a CPU. This was soon shown to work even faster when trained on a GPU [4].

2.2 Inverse Reinforcement Learning

Given an optimal policy π∗, Inverse Reinforcement Learning (IRL) aims to recover the reward
function R. Instead of using rewards as a means of punishment in order to learn a policy, IRL
observes a policy in order to learn what the end goal may be. A comprehensive review of IRL along
with its connection to Generative Adversarial Networks can be found in [5]. We show in Section 2.4
how this relates to our method.

2.3 Generative Adversarial Networks

Generative Adversarial Networks (GANs) [6] represent a class of generative models based on a
game theory scenario in which a generator network G competes against an adversary, D. The goal
is to train the generator network to generate samples that are indistinguishable from the true data
Pr by mapping a random input variable z ∼ Pz to some x. This mapping can be represented as
G(z; θg), where G is a neural network with weights θg, and z is a random variable sampled from
some distribution, e.g. z ∼ N (0, 1). The discriminator, D(x; θd), is represented by a second neural
network with weights θd, and outputs a scalar representing the probability that a sample x came
from Pr rather than from G. The two networks are trained simultaneously, with D being trained to
maximize the probability of correctly distinguishing whether or not a sample came from Pr or from
G, and G being trained to fool D by minimizing log (1−D(G(z))). This can be represented by the
following objective function:

min
G

max
D

Ex∼Pr
[log D(x)] + Ez∼Pz

[log (1−D(G(z)))] (1)

where Pz is a prior on the input noise (e.g., z ∼ N (0, 1)) and Pr is the true dataset. It is shown in [6]
that this amounts to minimizing the Jenson-Shannon divergence between two distributions.

Conditional GANs Conditional GANs (cGANs) [15] introduce a simple method to give varying
amounts of control to the image generation process by some extra information y (e.g a class label).
This is done by simply feeding y to the generator and discriminator networks, along with z and x,
respectively. The new objective function then becomes:

min
G

max
D

Ex,y∼Pr
[log D(x, y)] + Ez∼Pz,y∼Pr

[log (1−D(G(z, y)))] (2)
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cGANs have been shown to work well on image-to-image translation problems, where the generator
is conditioned on an image [9, 12, 29]. In our approach, we condition on an image, but instead
generate an action.

GAN Variations GANs have been the most popular and sucessful generative model for the past few
years, and have been getting a lot of attention in the research community. Despite their theroretical
findings, in practice they are extremely difficult to train. A major issue is that of the vanishing
gradient, where the discriminator does not offer suitable gradients for the generator to train from.
This was further explored by the work of [1], who proved that as the discriminator improves, the
gradients given to the generator get worse. A least squares approach was done by [14], which adds
a least squared penalty, pulling the generated data closer to the true distribution. Most impressive
has been work done on using the Wasserstein distance as a metric, as first seen in [2]. The main
idea behind the Wasserstein GAN (WGAN) is that the Wasserstein distance provides much stronger
gradients to the generator than the Jenson Shannon does. This comes with a price, however, namely
that the discriminator must be a K-Lipschitz function for some K. [2] does this by clipping the
weights of the discriminator after each gradient update in order for the parameters to lie in a compact
space. This turns out to greatly cripple the discriminator in terms of capacity and the speed at which
it learns. The work of [7] improves the WGAN by instead penalizing the norm of the gradient with
respect to its input. This follows the property that a differentiable function is 1-Lipschitz if and only
if it has gradients with norm equal to or less than 1 everywhere [7]. Further improvements have been
recently seen as well [27, 16]. To keep training times low, we stick with the original formulation,
however consider these variations for future work.

2.4 Generative Adversarial Imitation Learning

Most similar to our approach is the work of [8] who directly extract a policy from data. The task of
learning a policy from expert behavior without access to any reinforcement signal or interaction from
the expert has several approaches. The use of IRL in order to extract a cost function to then use to
learn a policy is one approach, but can be slow and has many steps. Instead, [8] shows they can learn
a policy directly from expert data in a model-free way. In their adversarial framework, they aim to
train a generator in order to generate an occupancy measure pπ such that it is indistinguishable from
the true occupancy measure pπE

exhibited by an expert. The work of [11] applies this directly to the
self driving car approach. They use a combination of “LIDAR-like” beams and hand crafted features
(speed, vehicle length, lane offset, etc.) as input to their network. Our approach is similar, but we are
able to train on images.

Our method aims to extract a policy directly from data as seen in [8]. That policy may not be optimal
for the game environment, but it is the policy we wish to approximate, as our end goal is to simply
perform behavioral cloning by performing realistic actions in a simulation that are indistinguishable
from a human player. In this setting, there is not a direct reward function for us to use. One may
argue that in our setting (self-driving) a reward function may be to stay on the road, or follow the
rules of the road, etc. However, rules of the road are rarely followed in video games, and we may
in fact want to go off-roading due to exploration, following a path, escaping the police, etc. This
relaxation makes the reward function very nonlinear, and thus very difficult to approximate. For this
reason, we do not take the Inverse Reinforcement Learning approach, and instead aim to extract the
policy directly from data.

3 D-GAN

In this section we present Driving-GAN (D-GAN), an adversarial network able to approximate a
policy from data and generate realistic actions conditioned on a frame from a simulation.

Approach Our approach is based on the idea that in many situations in a video game there is more
than one “correct” or realistic action to take. Consider playing GTAV for the first time (driving), and
trying to get a feel from the controls. Upon coming to a fork in the road, should you go left, or right?
Because there is no incentive to go one way or the other, the choice is entirely up to the player. It is
important to not confuse this with the problem of exploration in reinforcement learning. Here, we
aren’t trying to cover every part of the map in our exploration, we are exploring just for the sake of
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exploring. The goal of D-GAN is to approximate human behavior in the sense of playing a video
game.

While it may be argued that a discriminative model would be a better choice for this task, we argue
that this would in fact constrain the solution space to that displayed in the training data. Consider
the scenario of always turning right at a certain intersection during the training data. Although in
other intersections in the training data the human has turned left, there is a very high probability that
during testing when the agent comes to that intersection, it will turn right as well. This is because
by constraining the solution space, the model exhibits a behavior of turning right when seeing that
intersection. However, in a generative approach, such as with GANs, the model does not constrain
itself to situations such as these. Instead, the model learns that at any intersection, a left or right turn
is realistic, and we would expect it to vary its choices.

We train a policy πθ to exhibit human-like behavior by rewarding it for successfully fooling a classifier.
The discriminator network in our GAN framework acts as this classifier, and penalizes state-action
pairs which are unrealistic. More formally, given a set of state-action pairs sampled from πE by
recording a human player XE = {(s1, a1), (s2, a2), ..., (sn, an)} our objective becomes:

min
G

max
D

E(s,a)∼XE
[log D(s, a)] + Es∼XE ,z∼Pz

[log (1−D(s,G(s, z)))], (3)

where Pz is a prior on the input noise (e.g., z ∼ N (0, 1)).

Architecture We use GANs as our generative model, as discussed in Section 2.3. Our generator
network is flipped from the usual GAN architecture design because instead of inputing a vector and
outputting an image, we are inputing an image and outputting a vector. Below show the architectures
for our generator and discriminator. In the output size, the batch is omitted for clarity. Here, an is the
number of actions and fn is the number of input frames. For the discriminator, the action vector is
padded and concatenated onto the image channel-wise.

Generator

Operation Kernel Stride Filters Batch Norm Activation Output Size
Concatenation 256× 256× 3fn
Convolution 5× 5 2 32 Yes ReLU 128× 128× 32
Convolution 5× 5 2 64 Yes ReLU 64× 64× 64
Convolution 5× 5 2 128 Yes ReLU 32× 32× 128
Convolution 5× 5 2 256 Yes ReLU 16× 16× 256
Convolution 5× 5 2 512 Yes ReLU 8× 8× 512
Convolution 5× 5 2 512 Yes ReLU 4× 4× 512
Convolution 5× 5 2 512 Yes ReLU 2× 2× 512
Convolution 5× 5 2 512 No ReLU 1× 1× 512

Fully Connected TanH an

Discriminator

Operation Kernel Stride Filters Batch Norm Activation Output Size
Concatenation 256× 256× (3fn + an)
Convolution 5× 4 2 64 No Leaky ReLU 128× 128× 64
Convolution 5× 4 2 128 Yes Leaky ReLU 64× 64× 128
Convolution 5× 4 2 256 Yes Leaky ReLU 32× 32× 256
Convolution 5× 4 2 512 Yes Leaky ReLU 16× 16× 512
Convolution 1× 1 1 1 Yes Sigmoid 16× 16× 1

Due to the time series nature of the data, future work will encompass using Long Short Term Memory
(LSTM) networks. LSTM units are a special type of building piece for Recurrent Neural Networks
(RNNs) that are able to remember values over arbitrary periods of time. Because of the very short
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Figure 1: A very cherry-picked example of our agent choosing to turn right when approaching an
intersection.

interval between frames, the network may decide on one frame to turn right, but then decide on the
next frame to turn left, causing a very jittery and unnatural looking agent. One quick fix (hack) for
this is to execute actions across multiple input frames during testing. 1

4 Experiments

Environment We use the video game Grand Theft Auto V (GTAV) for our simulation environment.
With realistic graphics, modifications (mods) able to change the weather, hundreds of different types
of cars and motorcycles (even planes and bicycles), and a multitude of landscapes including desert,
city, and rural, it is the perfect sandbox environment for teaching an agent. In order for there to be
enough GPU memory for both running the game and also performing inference in our network, we
set the graphics to the lowest settings (which are still pretty good). While just a simulation, the work
of [22] showed that they were able to improve the realism of synthetic images by introducing an
“enhancer” network. This work could be applied here in order to improve the already very realistic
graphics for training on close to real-world data. We leave that for future work.

Figure 2: Two screenshots from GTAV showing very different environment, weather, vehicles, and
lighting conditions. The networks are trained using this viewpoint as input.

Capturing Data We capture data by recording a human play the game, driving around the map
with no end location or goal in mind. For each frame, we capture the keys pressed during that frame.
Possible actions are: W, A, S, D, WA, WD, DS, DA, NO_KEY, leaving us with a one-hot action
vector y ∈ R9 (WASD correspond to arrow keys on a keyboard with W=up, S=down, etc.). An in
game day takes 48 minutes in real time, meaning that by having a person play the game for an hour
we can obtain data across varying lighting conditions. Changing the weather to rainy or cloudy, as
well as driving the many different types of cars available can expand our dataset even further 2. We
would like to note that the training data is not perfect, and off-road driving, collisions, wrong side of
the road, etc. did occur. Future work will focus on training multiple types of drivers to compare, i.e.,
one following the rules of the road, one off road driver, one slow, etc.

1Our code can be found here: https://github.com/cameronfabbri/Adversarial-Agent
2A full list of vehicles, planes, bikes, and boats that are available in-game (without mods) can be found here:

http://grandtheftauto.net/gta5/vehicles
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Training Details Training was done on a GTX 1080. We used a batch size of 16, fn = 1 frame
per action as input, and the vanilla GAN loss. The simulation was running in windowed mode at a
resolution of 800 × 600. Frames were grabbed directly from the screen and resized to 256 × 256.
One frame of Gaussian noise sampled from N (−1, 1) was concatenated onto the image channel,
resulting in an input s ∈ R256×256×4. We trained for 50 epochs which took about 12 hours. The
images and one-hot action vectors were normalized to a range of [-1,1].

Figure 3: A more accurate depiction of our agent in action. A full video of our agent driving can be
seen here: https://youtu.be/9lFmWjGhagU

Results Obtaining quantitative results for generative models is quite difficult. For the same reason
we do not have or know the reward function R, we do not have a direct way of evaluating our agent
quantitatively. On the other hand, qualitatively we can observe its behavior in the environment and
compare with our knowledge of the human player. We can say with certainty that there is still work to
be done. As seen in the video1, the agent acts very erratically, and when stuck in a corner or against a
wall is unable to recover. However, in some instances the agent is able to avoid obstacles such as
other vehicles, and make turns onto other streets. This shows promise in our generative approach for
policy approximation.

Because our generative model is producing a distribution over driver actions, it should model the
distribution seen in the training set. Part of our future work includes finding an efficient way to
measure this, given that the training and testing data would be different. A very nice test would to
record short clips of the training data, as well as short clips of the model playing, then perform a large
scale user study to ask participants to classify them as either real or generated. Successful results
from this would be a classification of 50% (meaning our model was indistinguishable from a human
player). We leave this to future work.

5 Conclusion

This paper presented an adversarial approach towards approximating a human policy given by a
human. Applied to the self driving car setting in simulation, the goal was not to be a perfect driver but
to exhibit human like qualities based on the training data. We were driven towards using generative
models for behavioral cloning by the analyzing the task we wished to accomplish: train an agent
to drive a car in simulation such that it is indistinguishable from a human player. While Inverse
Reinforcement Learning could be used for this task, it is a two step process: 1) Learn the reward
function R, and 2) Use Reinforcement Learning to learn a policy π in order to maximize the expected
reward from R. This two step process is cumbersome and has long processing times. Our one-step
method aims to extract a policy π directly from observation. Our contribution was the extension of
using Generative Adversarial Networks as a model to directly approximate a policy from image data.

Future Work There are a lot of ways in which this work can be extended. GTAV contains more
than just cars: bicycles, airplanes, buses, etc., all of which can be controlled. Because our method
only requires state-action pairs for training in the form of image-keystroke, we should be able to learn
policies for those forms of transportation as well. Furthermore, this can be applied to other games
and simulations.

In terms of our method, we plan to test out the other GAN formulations as discussed in Section 2.3.
We briefly experimented with the Improved Wasserstein Method [7], but found no improvement and
a much longer training time, so it was discarded for the time being.
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