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Abstract— Autonomous underwater vehicles (AUVs) rely on
a variety of sensors – acoustic, inertial and visual – for intelli-
gent decision making. Due to its non-intrusive, passive nature
and high information content, vision is an attractive sensing
modality, particularly at shallower depths. However, factors
such as light refraction and absorption, suspended particles in
the water, and color distortion affect the quality of visual data,
resulting in noisy and distorted images. AUVs that rely on visual
sensing thus face difficult challenges and consequently exhibit
poor performance on vision-driven tasks. This paper proposes
a method to improve the quality of visual underwater scenes
using Generative Adversarial Networks (GANs), with the goal
of improving input to vision-driven behaviors further down
the autonomy pipeline. Furthermore, we show how recently
proposed methods are able to generate a dataset for the purpose
of such underwater image restoration. For any visually-guided
underwater robots, this improvement can result in increased
safety and reliability through robust visual perception. To
that effect, we present quantitative and qualitative data which
demonstrates that images corrected through the proposed
approach generate more visually appealing images, and also
provide increased accuracy for a diver tracking algorithm.

I. INTRODUCTION

Underwater robotics has been a steadily growing subfield
of autonomous field robotics, assisted by the advent of
novel platforms, sensors and propulsion mechanisms. While
autonomous underwater vehicles are often equipped with
a variety of sensors, visual sensing is an attractive option
because of its non-intrusive, passive, and energy efficient
nature. The monitoring of coral reefs [1], deep ocean ex-
ploration [2], and mapping of the seabed [3] are a number
of tasks where visually-guided AUVs and ROVs (Remotely
Operated Vehicles) have seen widespread use. Use of these
robots ensures humans are not exposed to the hazards of
underwater exploration, as they no longer need to venture to
the depths (which was how such tasks were carried out in
the past). Despite the advantages of using vision, underwater
environments pose unique challenges to visual sensing, as
light refraction, absorption, and scattering from suspended
particles can greatly affect optics. For example, because red
wavelengths are quickly absorbed by water, images tend to
have a green or blue hue to them. As one goes deeper, this
effect worsens, as more and more red hue is absorbed. This
distortion is extremely non-linear in nature, and is affected by
a large number of factors, such as the amount of light present
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Fig. 1. Sample underwater images with natural and man-made artifacts
(which in this case is our underwater robot) displaying the diversity of
distortions that can occur. With the varying camera-to-object distances in
the images, the distortion and loss of color varies between the different
images.

(e.g., overcast versus sunny, operational depth), amount of
particles in the water, time of day, and the camera being
used. This may cause difficulty in tasks such as segmentation,
tracking, or classification due to their indirect or direct use
of color.

As color and illumination begin to change with depth,
vision-based algorithms need to be generalizable in order
to work within the depth ranges a robot may operate in.
Because of the high cost and difficulty of acquiring a variety
of underwater data to train a visual system on, as well as the
high amount of noise introduced, algorithms may (and do)
perform poorly in these different domains. Figure I shows the
high variability in visual scenes that may occur in underwater
environments. A step towards a solution to this issue is
to be able to restore the images such that they appear to
be above water, i.e., with colors corrected and suspended
particles removed from the scene. By performing a many-
to-one mapping of these domains from underwater to not
underwater (what the image would look like above water),
algorithms that have difficulty performing across multiple
forms of noise may be able to focus on only one clean
domain.

Deep neural networks have been shown to be powerful
non-linear function approximators, especially in the field of
vision [4]. Often times, these networks require large amounts
of data, either labeled or paired with ground truth. For
the problem of automatically colorizing grayscale images
[5], paired training data is readily available due to the fact
that any color image can be converted to black and white.
However, underwater images distorted by either color or
some other phenomenon lack ground truth, which is a major
hindrance towards adopting a similar approach for correc-
tion. This paper proposes a technique based on Generative



Adversarial Networks (GANs) to improve the quality of
visual underwater scenes with the goal of improving the
performance of vision-driven behaviors for autonomous un-
derwater robots. We use the recently proposed CycleGAN [6]
approach, which learns to translate an image from any
arbitrary domain X to another arbitrary domain Y without
image pairs, as a way to generate a paired dataset. By letting
X be a set of undistorted underwater images and Y be a set
of distorted underwater images, we can generate an image
that appears to be underwater while retaining ground truth.

II. RELATED WORK

While there have been a number of successful recent
approaches towards automatic colorization [5], [7], most are
focused on the task of converting grayscale images to color.
Quite a few approaches use a physics-based technique to
directly model light refraction [8]. Specifically for restor-
ing color in underwater images, the work of [9] uses an
energy minimization formulation using a Markov Random
Field. Most similar to the work proposed in this paper
is the recently proposed WaterGAN [10], which uses an
adversarial approach towards generating realistic underwater
images. Their generator model can be broken down into three
stages: 1) Attenuation, which accounts for range-dependent
attenuation of light. 2) Scattering, which models the haze
effect caused by photons scattering back towards the image
sensor and 3) Vignetting, which produces a shading effect
on the image corners that can be caused by certain camera
lenses. Differentiating from our work, they use a GAN for
generating the underwater images and use strictly Euclidean
loss for color correction, whereas we use a GAN for both.
Furthermore, they require depth information during the train-
ing of WaterGAN, which can often be difficult to attain
particularly for underwater autonomous robotic applications.
Our work only requires images of objects in two separate
domains (e.g., underwater and terrestrial) throughout the
entire process.

Recent work in generative models, specifically GANs,
have shown great success in areas such as inpainting [11],
style transfer [12], and image-to-image translation [13], [6].
This is primarily due to their ability to provide a more
meaningful loss than simply the Euclidean distance, which
has been shown to produce blurry results. In our work, we
structure the problem of estimating the true appearance of
underwater imagery as a paired image-to-image translation
problem, using Generative Adversarial Networks (GANs) as
our generative model (see Section III-B for details). Much
like the work of [13], we use image pairs from two domains
as input and ground truth.

III. METHODOLOGY

Underwater images distorted by lighting or other circum-
stances lack ground truth, which is a necessity for previous
colorization approaches. Furthermore, the distortion present
in an underwater image is highly nonlinear; simple methods
such as adding a hue to an image do not capture all of the
dependencies. We propose to use CycleGAN as a distortion

model in order to generate paired images for training. Given
a domain of underwater images with no distortion, and a
domain of underwater images with distortion, CycleGAN is
able to perform style transfer. Given an undistorted image,
CycleGAN distorts it such that it appears to have come from
the domain of distorted images. These pairs are then used in
our algorithm for image reconstruction.

A. Dataset Generation

Depth, lighting conditions, camera model, and physical
location in the underwater environment are all factors that
affect the amount of distortion an image will be subjected
to. Under certain conditions, it is possible that an underwater
image may have very little distortion, or none at all. We
let IC be an underwater image with no distortion, and ID

be the same image with distortion. Our goal is to learn the
function f : ID → IC . Because of the difficulty of collecting
underwater data, more often than not only ID or IC exist,
but not both.

To circumvent the problem of insufficient image pairs, we
use CycleGAN to generate ID from IC , which gives us a
paired dataset of images. Given two datasets X and Y , where
IC ∈ X and ID ∈ Y , CycleGAN learns a mapping F :
X → Y . Figure 2 shows paired samples generated from
CycleGAN. From this paired dataset, we train a generator G
to learn the function f : ID → IC . It should be noted that
during the training process of CycleGAN, it simultaneously
learns a mapping G : Y → X , which is similar to f . In
Section IV, we compare images generated by CycleGAN
with images generated through our approach.

B. Adversarial Networks

In machine learning literature, Generative Adversarial Net-
works (GANs) [14] represent a class of generative models
based on game theory in which a generator network com-
petes against an adversary. From a classification perspective,
the generator network G produces instances which actively
attempt to ‘fool’ the discriminator network D. The goal is for
the discriminator network to be able to distinguish between
‘true’ instances coming from the dataset and ‘false’ instances
produced by the generator network. In our case, conditioned
on an image ID, the generator is trained to produce an
image to try and fool the discriminator, which is trained
to distinguish between the true non-distorted underwater
images and the supposed non-distorted images produced by
the generator. In the original GAN formulation, our goal is
to solve the minimax problem:

min
G

max
D

EIC∼ptrain(IC)[logD(IC)]+

EID∼pgen(ID)[log(1−D(G(ID)))].
(1)

Note for simplicity in notation, we will further omit IC ∼
ptrain(I

C) and ID ∼ pgen(I
D). In this formulation, the

discriminator is hypothesized as a classifier with a sigmoid
cross-entropy loss function, which in practice may lead to
issues such as the vanishing gradient and mode collapse. As
shown by [15], as the discriminator improves, the gradient



Fig. 2. Paired samples of ground truth and distorted images generated by
CycleGAN. Top row: Ground truth. Bottom row: Generated samples.

of the generator vanishes, making it difficult or impossible to
train. Mode collapse occurs when the generator “collapses”
onto a single point, fooling the discriminator with only one
instance. To illustrate the effect of mode collapse, imagine a
GAN is being used to generate digits from the MNIST [16]
dataset, but it only generated the same digit. In reality, the
desired outcome would be to generate a diverse collection
of all the digits. To this end, there have been a number of
recent methods which hypothesize a different loss function
for the discriminator [17], [18], [19], [20]. We focus on
the Wasserstein GAN (WGAN) [18] formulation, which
proposes to use the Earth-Mover or Wasserstein-1 distance
W by constructing a value function using the Kantorovich-
Rubinstein duality [21]. In this formulation, W is approx-
imated given a set of k-Lipschitz functions f modeled as
neural networks. To ensure f is k-Lipschitz, the weights
of the discriminator are clipped to some range [−c, c]. In
our work, we adopt the Wasserstein GAN with gradient
penalty (WGAN-GP) [19], which instead of clipping network
weights like in [18], ensures the Lipschitz constraint by
enforcing a soft constraint on the gradient norm of the
discriminator’s output with respect to its input. Following
[19], our new objective then becomes

LWGAN (G,D) = E[D(IC)]− E[D(G(ID))]+

λGPEx̂∼Px̂
[(||∇x̂D(x̂)||2 − 1)2],

(2)
where Px̂ is defined as samples along straight lines between
pairs of points coming from the true data distribution and the
generator distribution, and λGP is a weighing factor. In order
to give G some sense of ground truth, as well as capture low
level frequencies in the image, we also consider the L1 loss

LL1 = E[||IC −G(ID)||1]. (3)

Combining these, we get our final objective function for our
network, which we call Underwater GAN (UGAN),

L∗
UGAN = min

G
max
D
LWGAN (G,D) + λ1LL1(G). (4)

C. Image Gradient Difference Loss

Often times generative models produce blurry images. We
explore a strategy to sharpen these predictions by directly

penalizing the differences of image gradient predictions in
the generator, as proposed by [22]. Given a ground truth
image IC , predicted image IP = G(ID), and α which is an
integer greater than or equal to 1, the Gradient Difference
Loss (GDL) is given by

LGDL(IC , IP ) =∑
i,j

||ICi,j − ICi−1,j | − |IPi,j − IPi−1,j ||α+

||ICi,j−1 − ICi,j | − |IPi,j−1 − IPi,j ||α.

(5)

In our experiments, we denote our network as UGAN-P when
considering the GDL, which can be expressed as

L∗
UGAN−P = min

G
max
D
LWGAN (G,D)+

λ1LL1(G)+λ2LGDL.
(6)

D. Network Architecture and Training Details

Our generator network is a fully convolutional encoder-
decoder, similar to the work of [13], which is designed as a
“U-Net” [23] due to the structural similarity between input
and output. Encoder-decoder networks downsample (encode)
the input via convolutions to a lower dimensional embedding,
which is then upsampled (decode) via transpose convolutions
to reconstruct an image. The advantage of using a “U-
Net” comes from explicitly preserving spatial dependencies
produced by the encoder, as opposed to relying on the
embedding to contain all of the information. This is done
by the addition of “skip connections”, which concatenate
the activations produced from a convolution layer i in the
encoder to the input of a transpose convolution layer n−i+1
in the decoder, where n is the total number of layers in
the network. Each convolutional layer in our generator uses
kernel size 4× 4 with stride 2. Convolutions in the encoder
portion of the network are followed by batch normalization
[24] and a leaky ReLU activation with slope 0.2, while
transpose convolutions in the decoder are followed by a
ReLU activation [25] (no batch norm in the decoder). Exempt
from this is the last layer of the decoder, which uses a
TanH nonlinearity to match the input distribution of [−1, 1].
Recent work has proposed Instance Normalization [26] to
improve quality in image-to-image translation tasks, however
we observed no added benefit.

Our fully convolutional discriminator is modeled after that
of [27], except no batch normalization is used. This is due
to the fact that WGAN-GP penalizes the norm of the dis-
criminator’s gradient with respect to each input individually,
which batch normalization would invalidate. The authors of
[19] recommend layer normalization [28], but we found no
significant improvements. Our discriminator is modeled as
a PatchGAN [13], [29], which discriminates at the level of
image patches. As opposed to a regular discriminator, which
outputs a scalar value corresponding to real or fake, our
PatchGAN discriminator outputs a 32×32×1 feature matrix,
which provides a metric for high-level frequencies.
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Fig. 3. Samples from our ImageNet testing set. The network can both recover color and also correct color if a small amount is present.

IV. EXPERIMENTS

A. Datasets

We use several subsets of Imagenet [30] for training and
evaluation of our methods. We also evaluate a frequency-
and spatial-domain diver-tracking algorithm on a video of
scuba divers taken from YouTubeTM 1. Subsets of Imagenet
containing underwater images were selected for the training
of CycleGAN, and manually separated into two classes based
on visual inspection. We let X be the set of underwater
images with no distortion, and Y be the set of underwater
images with distortion. X contained 6143 images, and Y
contained 1817 images. We then trained CycleGAN to learn
the mapping F : X → Y , such that images from X appeared
to have come from Y . Finally, our image pairs for training
data were generated by distorting all images in X with F .
Figure 2 shows sample training pairs. When comparing with
CycleGAN, we used a test set of 56 images acquired from
FlickrTM.

B. Evaluation

We train UGAN and UGAN-P on the image pairs gener-
ated by CycleGAN and evaluate on the images from the test
set, Y . Note that these images do not contain any ground
truth, as they are original distorted images from Imagenet.
Images for training and testing are of size 256×256×3 and
normalized between [−1, 1]. Figure 3 shows samples from
the test set. Notably, these images contain varying amounts
of noise. Both UGAN and UGAN-P are able to recover lost
color information, as well as correct any color information
that is present.

While many of the distorted images contain a blue or
green hue over the entire image space, that is not always
the case. In certain environments, it is possible that objects
close to the camera are undistorted with correct colors, while
the background of the image contains distortion. In these
cases, we would like the network to only correct parts of the
image that appear distorted. Column H of Figure 3 shows
a sample of such an image. The orange of the clownfish

1https://www.youtube.com/watch?v=QmRFmhILd5o

is left unchanged while the distorted sea anemone in the
background has its color corrected.

For a quantitative evaluation we compare UGAN and
UGAN-P to CycleGAN, as CycleGAN inherently learns an
inverse mapping during the training of G : Y → X . We first
use the Canny edge detector [31], as this provides a color
agnostic evaluation of the images in comparison to ground
truth. Second, we compare local image patches to provide
sharpness metrics on our images. Lastly, we show how an
existing tracking algorithm for an underwater robot improves
performance with generated images.

C. Comparison to CycleGAN

It is important to note that during the process of learning
a mapping F : X → Y , CycleGAN also learns a mapping
G : Y → X . Here we give a comparison to our methods.
We use the Canny edge detector [31] to provide a color
agnostic evaluation of the images, as the originals contain
distorted colors and cannot be compared back to as ground
truth. Due to the fact that restoring color information should
not alter the overall structure of the image, we measure the
distance in the image space between the edges found in the
original and generated images. Figure 4 shows the original
images and results from edge detection. Table I provides the
measurements from Figure 4, as well as the average over
our entire FlickrTM dataset. Both UGAN and UGAN-P are
consistently closer in the image space to the original than
that of CycleGAN, suggesting noise due to blur. Next, we
evaluate this noise explicitly.

We explore the artifacts of content loss, as seen in Figure
5. In particular, we compare local statistics of the highlighted
image patches, where each image patch is resized to 64×64.
We use the GDL [22] from (5) as a sharpness measure. A
lower GDL measure implies a smoother transition between
pixels, as a noisy image would have large jumps in the
image’s gradient, leading to a higher score. As seen in
Table II, the GDL is lower for both UGAN and UGAN-
P. Interestingly, UGAN consistently has a lower score than
UGAN-P, despite UGAN-P explicitly accounting for this
metric in the objective function. Reasoning for this is left



TABLE I
DISTANCES IN IMAGE SPACE

Row/Method CycleGAN UGAN UGAN-P
A 116.45 85.71 86.15
B 114.49 97.92 101.01
C 120.84 96.53 97.57
D 129.27 108.90 110.50

Mean 111.60 94.91 96.51

for our future work.
Another metric we use to compare image patches are the

mean and standard deviation of a patch. The standard devi-
ation gives us a sense of blurriness because it defines how
far the data deviates from the mean. In the case of images,
this would suggest a blurring effect due to the data being
more clustered toward one pixel value. Table III shows the
mean and standard deviations of the RGB values for the local
image patches seen in Figure 5. Despite qualitative evaluation
showing our methods are much sharper, quantitatively they
show only slight improvement. Other metrics such as entropy
are left as future work.

TABLE II
GRADIENT DIFFERENCE LOSS METRICS

Method/
Patch

CycleGAN UGAN UGAN-P

Red 11.53 9.39 10.93
Blue 7.52 4.83 5.50

Green 4.15 3.18 3.25
Orange 6.72 5.65 5.79

TABLE III
MEAN AND STANDARD DEVIATION METRICS

Method/
Patch

Original CycleGAN UGAN UGAN-P

Red 0.43 ± 0.23 0.42 ± 0.22 0.44 ± 0.23 0.45 ± 0.25
Blue 0.51 ± 0.18 0.57 ± 0.17 0.57 ± 0.17 0.57 ± 0.17

Green 0.36 ± 0.17 0.36 ± 0.14 0.37 ± 0.17 0.36 ± 0.17
Orange 0.3 ± 0.15 0.25 ± 0.12 0.26 ± 0.13 0.27 ± 0.14

D. Diver Tracking using Frequency-Domain Detection

We investigate the frequency-domain characteristics of
the restored images through a case-study of periodic mo-
tion tracking in sequence of images. Particularly, we com-
pared the performance of Mixed Domain Periodic Motion
(MDPM)- tracker [32] on a sequence of images of a diver
swimming in arbitrary directions. MDPM tracker is designed
for underwater robots to follow scuba divers by tracking
distinct frequency-domain signatures (high-amplitude spectra
at 1-2Hz) pertaining to human swimming. Amplitude spectra
in frequency-domain correspond to the periodic intensity
variations in image-space over time, which are often eroded
in noisy underwater images [33].

Fig. 6 illustrates the improved performance of MDPM
tracker on generated images compared to the real ones.
Underwater images often fail to capture the true contrast in
intensity values between foreground and background due to

Original CycleGAN UGAN UGAN-P

Fig. 4. Running the Canny Edge Detector on sample images. Both variants
of UGAN contain less noise than CycleGAN, and are closer in the image
space to the original. For each pair, the top row is the input image, and
bottom row the result of the edge detector. The figure depicts four different
sets of images, successively labeled A to D from top to bottom. See Table I.

low visibility. The generated images seem to restore these
eroded intensity variations to some extent, causing much
improved positive detection (a 350% increase in correct
detections) for the MDPM tracker.

E. Training and Inference Performance

In all of our experiments, we use λ1 = 100, λGP = 10,
batch size of 32, and the Adam Optimizer [34] with learning
rate 1e − 4. Following WGAN-GP, the discriminator is
updated n times for every update of the generator, where
n = 5. For UGAN-P, we set λ2 = 1.0 and α = 1.



Original CycleGAN UGAN UGAN-P

Fig. 5. Local image patches extracted for quantitative comparisons, shown in Tables II and III. Each patch was resized to 64× 64, but shown enlarged
for viewing ability.

Our implementation2 uses the Tensorflow library [35]. All
networks were trained on an NVIDIA GTX 1080 GPU for
100 epochs. Inference on the GPU takes on average 0.0138s,
which is about 72 Frames Per Second (FPS). On a CPU
(Intel Core i7-5930K), inference takes on average 0.1244s,
which is about 8 FPS. In both cases, the input images have
dimensions 256×256×3, which are acceptable measures for
underwater tasks. A video of our method is also available 3.

V. CONCLUSION

This paper presents an approach for enhancing underwater
color images through the use of generative adversarial net-
works. We demonstrate the use of CycleGAN to generate
a dataset of paired images to provide a training set for
the proposed restoration model. Quantitative and qualitative
results demonstrate the effectiveness of this method, and
using a diver tracking algorithm on corrected images of scuba
divers show higher accuracy compared to the uncorrected
image sequence.

Future work will focus on creating a larger and more
diverse dataset from underwater objects, thus making the
network more generalizable. Augmenting the data generated
by CycleGAN with noise such as particle and lighting effects
would improve the diversity of the dataset. We also intend
to investigate a number of different quantitative performance
metrics to evaluate our method.
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